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Abstract 
 
Accurate segmentation of anatomical structures in Computed Tomography (CT) scans, particularly the lungs, is 
crucial for detecting and monitoring various pulmonary diseases. However, manual segmentation has several 
drawbacks, including being labor-intensive, subject to variability between different observers, and requiring a 
significant amount of time to complete. We propose a novel approach that combines the strengths of foundation 
models, knowledge distillation, and pseudo-labeling techniques for lung CT segmentation, while also considering 
the context of surrounding anatomical structures to enhance segmentation performance. Our approach 
leverages publicly available datasets to develop a robust foundation model using a dual-loss training approach, 
combining a cosine similarity loss between image and text embeddings and a distillation loss using MedSAM as 
a teacher model. Building upon this foundation model, we will generate high-resolution, multi-channel probability 
maps for various anatomical regions in lung CT scans using the model's zero-shot classification capabilities. 
These probability maps will be used to produce pseudo-segmentation labels for our in-house lung CT dataset, 
which will then be employed to fine-tune the MedSAM model using the H-SAM architecture. The fine-tuned model 
will be evaluated against state-of-the-art methods using in-house data, assessing its performance on both lung 
segmentation and the segmentation of other relevant anatomical structures. Our hypothesis is that the proposed 
approach, combining foundation models, knowledge distillation, and pseudo-labeling techniques, will result in a 
robust and efficient CT segmentation model that outperforms current state-of-the-art methods, demonstrating its 
potential for clinical translation and advancing the field of pulmonary medicine by providing a comprehensive 
understanding of the anatomical structures within lung CT scans.



Specific Aims 
 
Accurate segmentation of anatomical structures in Computed Tomography (CT) scans is crucial for detecting 
and monitoring various pulmonary diseases. However, manual segmentation is not only tedious and exhausting 
but also susceptible to variations in results due to differences in perception among those performing the task. 
Deep learning-based segmentation models, while powerful, often face limitations in medical applications due to 
the scarcity of sizable, annotated datasets required for effective training. Foundation models like MedSAM have 
shown promise in adapting to new tasks with limited data, but their performance on lung CT segmentation and 
the segmentation of other relevant anatomical structures remains underexplored. We hypothesize that by 
leveraging public datasets and pseudo-labeling techniques, we can develop a robust and efficient CT 
segmentation model that outperforms current state-of-the-art methods, providing a comprehensive 
understanding of the anatomical structures within lung CT scans. 

 
SA-1: Develop a foundation model for lung CT segmentation by leveraging public datasets and 
knowledge distillation from MedSAM. 

 
We will curate a comprehensive public dataset of 60,000 lung CT images and associated medical reports from 
various sources, including the Zenodo and NIH. The dataset will be pre-processed, ensuring uniformity and 
compatibility across all images. Using this data, we will build a CLIP-like model with a dual-loss training approach. 
The first loss will be a cosine similarity loss between image and text embeddings, encouraging the model to learn 
meaningful representations. The second loss will be a distillation loss utilizing MedSAM as the teacher model to 
guide the learning of the image encoder. The hypothesis for this aim is that the combination of CLIP-style training 
and MedSAM-assisted distillation, along with a diverse and well-curated dataset, will result in a foundation model 
with strong generalization capabilities for lung CT segmentation. 

 
SA-2: Generate high-resolution probability maps for lung regions using the foundation model's zero-
shot classification capabilities. 

Building upon the foundation model developed in SA-1, we will create an inference pipeline to generate high-
resolution, multi-channel probability maps for various anatomical regions in lung CT scans. This pipeline will 
leverage the zero-shot classification capabilities of the foundation model and a patch-based approach, where 
input CT images are divided into small, overlapping patches. Each patch will be processed by the image encoder 
to generate patch-level embeddings, which will be compared with text embeddings of anatomical regions using 
cosine similarity to assign probability scores. The probability maps will be refined through post-processing 
techniques, including normalization, Gaussian smoothing, and heuristic thresholding. In parallel, we will collect 
an in-house dataset of 250 lung CT scans, which will undergo quality control and pre-processing steps to ensure 
data consistency and reliability. The hypothesis for this aim is that the zero-shot classification capabilities of the 
foundation model, combined with the patch-based processing approach, can effectively generate high-quality 
probability maps for lung regions and other anatomical structures, even on unseen in-house data. 

SA-3: Produce pseudo-segmentations using the probability maps, fine-tune MedSAM, and evaluate on 
expert-annotated in-house data. 

 
We will generate pseudo-segmentation labels for our in-house lung CT dataset by combining MedSAM 
predictions guided by the probability maps from SA-2. The pseudo-labeled dataset will be augmented using 
various techniques to introduce more variability. The MedSAM model will be fine-tuned using the H-SAM 
architecture, which includes a LoRA-adapted image encoder and a hierarchical pixel decoder. To evaluate the 
fine-tuned model, we will use a held-out portion of the in-house dataset with expert-annotated segmentation 
labels. The model's performance will be assessed using various metrics and benchmarked against state-of-the-
art methods, including the original MedSAM, nnU-Net, and SAM. The hypothesis is that the pseudo-labeling 
approach, combined with MedSAM fine-tuning on diverse in-house data, will result in a model that outperforms 
current methods, demonstrating its robustness and generalizability. 

Background & Significance 
 

Respiratory diseases, such as chronic obstructive pulmonary disease (COPD), lung cancer, and interstitial lung 
diseases, persist as significant contributors to global health burdens and deaths7. The World Health Organization 
(WHO) revealed that COPD was the third most common cause of mortality worldwide, responsible for around 



3.2 million deaths8. Lung cancer continues to be the most fatal cancer, with projections of 2.5 million new 
diagnoses and 1.8 million deaths in 20229. The current COVID-19 pandemic has further emphasized the crucial 
need for timely identification and treatment of lung diseases, as pre-existing respiratory conditions are linked to 
a higher likelihood of severe disease and death10. Computed tomography (CT) is the primary imaging modality 
for diagnosing and monitoring lung diseases, providing high-resolution visualization of the lung parenchyma, 
airways, and vasculature11. However, the interpretation of lung CT scans is a complex and time-consuming task 
that requires expertise in radiology. The increasing volume of CT scans performed in clinical practice, coupled 
with the shortage of trained radiologists in many parts of the world, has led to a substantial burden on healthcare 
systems12. 

Accurate segmentation of lung regions in CT scans is a critical step in the quantitative analysis of lung diseases. 
It enables the extraction of clinically relevant features, such as lung volumes, densities, and textures, which can 
aid in the diagnosis, staging, and monitoring of various lung conditions13. However, manual segmentation is a 
tedious and labor-intensive process that is prone to inter-observer variability14. Recent advances in deep learning 
have shown promising results in automating lung CT segmentation, with convolutional neural networks (CNNs) 
achieving state-of-the-art performance15. Despite the promising results of these models, their effectiveness is 
largely dependent on access to extensive, labeled datasets for training purposes, which can be difficult to acquire 
in the healthcare field16. The acquisition of annotated medical imaging data is a significant bottleneck in the 
development of deep learning models for lung CT segmentation. Manual annotation requires extensive time and 
expertise from trained radiologists, making it difficult to scale up the dataset size17. Moreover, patient privacy 
concerns and institutional data sharing policies often limit the accessibility of medical imaging data18. As a result, 
many existing deep learning models for lung CT segmentation are trained on relatively small, single-institution 
datasets, which may limit their generalizability to diverse patient populations and scanning protocols19. 

To address the limitations of current deep learning approaches, foundation models, such as Segment Anything 
Model (SAM)20 or MedSAM21, have emerged as a promising solution. Foundation models are large, pre-trained 
models that capture rich representations of medical images and can be adapted to various downstream tasks 
with limited fine-tuning data22. MedSAM, in particular, has demonstrated impressive performance in several 
medical image segmentation tasks, including brain tumor and liver segmentation. However, its potential for lung 
CT segmentation remains largely unexplored. A recent study23 evaluated the performance of SAM on various 
medical image segmentation tasks, finding that its accuracy was significantly lower than state-of-the-art 
algorithms specifically designed for medical images. The study also identified several factors that may affect 
SAM's accuracy in medical images, such as segmentation difficulty, image dimension, target region size, and 
contrast. The adaptation of foundation models to lung CT segmentation faces several challenges. First, the 
domain shift between the pre-training and target datasets may limit the transferability of learned features24. 
Second, the fine-tuning of foundation models on limited annotated data may lead to overfitting and poor 
generalization25. Third, the high computational requirements of foundation models may hinder their deployment 
in clinical settings with limited resources26. 

To address these challenges, we propose a novel approach that combines the strengths of foundation models, 
knowledge distillation27, and pseudo-labeling techniques28 for lung CT segmentation, while also exploring the 
potential benefits of incorporating surrounding anatomical structures to enhance lung segmentation accuracy. 
Our approach leverages publicly available datasets, such as the NIH DeepLesion dataset29, and RAD-
ChestCT30, to mitigate the need for extensive in-house data collection and annotation. The NIH DeepLesion 
dataset consists of over 32,000 annotated lesions identified on CT images from 4,400 unique patients. The RAD-
ChestCT dataset, provided by Zenodo, includes 35,747 chest CT scans from 19,661 adult patients, with each 
CT volume annotated with a matrix of 84 abnormality labels and 52 location labels. These datasets contain a 
diverse range of lung CT scans from multiple institutions and patient populations, enabling the development of 
robust and generalizable models. 

We will employ knowledge distillation techniques to transfer the learned representations from MedSAM to a task-
specific lung CT segmentation model. Knowledge distillation is a process in which a smaller student model is 
trained to mimic the behavior of a larger teacher model. By distilling the knowledge from MedSAM, we can 
leverage its pre-trained features while reducing the computational requirements and improving the efficiency of 
the segmentation model31. This approach has the potential to overcome the domain shift and limited data 
challenges associated with foundation model adaptation. Furthermore, we will explore the use of pseudo-labeling 
techniques to generate high-quality probability maps for lung regions using the foundation model's zero-shot 
classification capabilities. Pseudo-labeling is a semi-supervised learning approach in which a model's predictions 
on unlabeled data are used as training labels for subsequent iterations. By generating pseudo-labels for our in-
house dataset, we can significantly expand the training data and improve the model's performance on unseen 
data32. This approach can also help in reducing the annotation burden and the reliance on expert-annotated 



data. 

The proposed lung CT segmentation model will be rigorously evaluated against state-of-the-art methods, such 
as nnU-Net33 and UNETR34, using expert-annotated in-house data. nnU-Net is a self-configuring deep learning 
framework that has shown excellent performance in various medical image segmentation tasks. UNETR is a 
transformer-based architecture that has achieved state-of-the-art performance in several medical image 
segmentation benchmarks. By comparing our model's performance against these established methods, we can 
demonstrate its effectiveness and potential for clinical translation. The successful development of a robust and 
efficient lung CT segmentation model using foundation models, knowledge distillation, and pseudo-labeling 
techniques can have significant implications for the diagnosis and management of lung diseases. The model can 
be integrated into clinical workflows to assist radiologists and pulmonologists in the accurate and timely 
assessment of lung conditions. It can also facilitate the development of quantitative imaging biomarkers for 
disease progression and treatment response monitoring. Moreover, the proposed approach can serve as a 
paradigm for adapting foundation models to other medical image segmentation tasks, such as cardiac and 
abdominal segmentation. The combination of publicly available datasets, knowledge distillation, and pseudo-
labeling techniques can enable the rapid development of high-performance segmentation models in various 
clinical domains, ultimately improving patient care and advancing the field of medical image analysis. 

 
Research Design and Methods 

SA-1: Develop a foundation model for lung CT segmentation using public datasets and knowledge distillation 
from MedSAM 

Dataset Curation and Preprocessing 

To develop a robust foundation model for lung CT segmentation, we will curate a comprehensive public dataset 
from two primary sources: the NIH DeepLesion dataset29 and the RAD-ChestCT dataset30. The NIH DeepLesion 
dataset consists of over 32,120 slices with annotated lesions from 4,427 unique patients, while the RAD-
ChestCT dataset, provided by Zenodo, includes 35,747 
chest CT scans from 19,661 adult patients, with each CT 
volume annotated with a matrix of 84 abnormality labels 
and 52 location labels. By combining these datasets, we 
can leverage a diverse range of approximately 60,000 
lung CT scans and their corresponding medical reports to 
train our foundation model, ensuring its generalizability 
across multiple institutions and patient populations. The 
choice of 60,000 CT scans is based on a finding1 
demonstrated that using a subset as small as 5% of the 
ImageNet dataset (approximately 700,000 images) was 
sufficient for pre-training without compromising transfer 
performance. Given that the number of slices per CT 
scan varies from 3 to 600, with the NIH DeepLesion 
dataset having around 3 slices on average and the RAD-
ChestCT dataset having 500 slices on average35, we 
estimate that our curated dataset of 60,000 CT scans will 
yield approximately 700,000 slices after trimming, which aligns with the recommended subset size for effective 
pre-training. 

To ensure the quality and relevance of the data used for training, we will perform a trimming process on the CT 
scans. As the middle slices of a CT scan typically contain the most important information about the patient's 
lungs, we will focus on these slices and discard those that do not contain significant information. Specifically, we 
will trim the RAD-ChestCT dataset CT scans down to 20 slices per scan, effectively reducing the total number of 
slices by 96%. This trimming process will not only help us focus on the most informative slices but also reduce 
computational requirements during the pre-training phase. 

We will perform several preprocessing steps to ensure uniformity and compatibility across the collected data. 
First, all CT scans will be converted to a standardized format, such as NIfTI, to maintain consistency. Next, we 
will resize the images to a fixed resolution of 512x512 pixels to facilitate efficient processing by our model. The 
CT scans will then undergo intensity normalization to ensure that the pixel values fall within a consistent range, 

 
Figure 1. Performance of pre-training using different 

ImageNet subsets by El-Nouby et al. (2023)1 



typically [-1000, 400] Hounsfield Units (HU), which covers the range of lung tissue densities. Furthermore, we 
will preprocess the associated medical reports and annotations to extract relevant information by tokenizing the 
text, removing stop words, and applying lemmatization to normalize the data. The processed reports and 
annotations will be used as input to the text encoder in our CLIP-like model. By curating a diverse and well-
preprocessed dataset from the NIH DeepLesion and RAD-ChestCT sources, and by applying a trimming 
process to focus on the most informative slices, we aim to provide our foundation model with a comprehensive 
and relevant set of lung CT images and their corresponding medical reports and annotations, enabling the 
model to learn robust and generalizable features for lung CT segmentation, laying a strong foundation for the 
subsequent stages of our research. 
 
Model Architecture and Training 

Our proposed foundation model for lung CT segmentation will adopt a CLIP36-like structure, consisting of an 
image encoder and a text encoder. The image encoder will be based on either CNN architectures, such as 
ResNet37, or Vision Transformer(ViT)38, pretrained on a large-scale dataset like ImageNet39. For the text 
encoder, we will employ a state-of-the-art language model, specifically LLaMA40, which has shown impressive 
performance on various natural language processing tasks. The two encoders will be jointly trained using a 
dual-loss approach, combining a cosine similarity loss between image and text embeddings and a distillation 
loss using MedSAM as a teacher model. 

The cosine similarity loss will be calculated based on the difference between the image embedding generated 
by the image encoder and the text embedding generated by the text encoder. This loss will encourage the 
model to learn meaningful representations that align the visual and textual information. The distillation loss, on 
the other hand, will be computed as the difference between the embedding from the image encoder and the 
embedding from the MedSAM encoder. By minimizing this loss, we will force our image encoder to output 
embeddings similar to those produced by MedSAM, effectively transferring the knowledge from the pre-trained 
MedSAM model to our foundation model. This teacher-student-like approach will enable our model to benefit 
from the rich representations learned by MedSAM while being specifically tailored for lung CT segmentation. 

The training process will involve fine-tuning both the image encoder and the text encoder on our curated dataset 
of lung CT images and their associated medical reports. We will employ techniques such as data augmentation, 
including random cropping, flipping, and rotation, to enhance the model's robustness and generalization ability. 
The model will be trained using an optimization algorithm like Adam41 with a learning rate scheduler to ensure 
stable convergence. We will monitor the model's performance on a validation set during training and employ 
early stopping to prevent overfitting. By leveraging the dual-loss approach and the knowledge distillation from 
MedSAM, our foundation model will learn to effectively capture the relationship between lung CT images and 
their corresponding medical reports, providing a strong basis for the subsequent segmentation tasks. 

Dual-Loss Training Approach: Combining CLIP-Style and MedSAM-Assisted Distillation 
 
To effectively train our foundation model for lung CT segmentation, we propose a dual-loss training approach 
that combines a cosine similarity loss between image and text embeddings, inspired by the CLIP method, and a 
distillation loss using MedSAM as the teacher model to guide the learning of the image encoder. This unique 
combination of losses enables our model to learn meaningful representations that align visual and textual 
information while benefiting from the rich representations learned by the pre-trained MedSAM model. 
 
The cosine similarity loss, as employed in the CLIP approach, encourages the model to learn a multi-modal 
embedding space where related image and text pairs are mapped closely together. Given an image embedding 
𝐼𝑒 generated by the image encoder and the corresponding text embedding 𝑇𝑒 produced by the text encoder, the 
cosine similarity loss is calculated as follows: 

𝐿𝑐𝑜𝑠 = 1 −
𝐼𝑒 ⋅ 𝑇𝑒

||𝐼𝑒|| ⋅ ||𝑇𝑒||
𝑬𝒒. 𝟏 

 
where 𝐼𝑒 ⋅ 𝑇𝑒 represents the dot product between the image and text embeddings, and 𝐼𝑒 and 𝑇𝑒 denote the 
Euclidean norms of the respective embeddings. By minimizing this loss, our model learns to associate visual 
patterns in lung CT images with relevant textual descriptions from the associated medical reports. This alignment 
of visual and textual representations enhances the model's ability to capture semantically meaningful features 
that are relevant to lung CT segmentation. 



 
Concurrently, we employ a distillation loss that leverages MedSAM as a teacher model to guide the learning of 
our image encoder. Let 𝐼𝑠 denote the embedding generated by our image encoder (student) and 𝐼𝑡 represent the 
embedding produced by the MedSAM encoder (teacher) for the same input image. The distillation loss is 
computed as the mean squared error between these embeddings: 
 

𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 =
1

𝑛
∑ (𝐼𝑠

(𝑖)
− 𝐼𝑡

(𝑖)
)

2
𝑛

𝑖=1

𝑬𝒒. 𝟐 

where 𝑛 is the number of samples in the batch, and 𝐼𝑠
(𝑖)

 and 𝐼𝑡
(𝑖)

 are the student and teacher embeddings for the 

𝑖-th sample, respectively. By 
minimizing this loss, we 
encourage our image 
encoder to output 
embeddings that are similar 
to those learned by 
MedSAM, effectively 
transferring the knowledge 
from the pre-trained 
MedSAM model to our 
foundation model. This 
teacher-student-like 
approach allows our model 
to benefit from the rich 
representations learned by 
MedSAM while being 
specifically tailored for the 
task of lung CT 
segmentation. 
 
The distillation process is 
inspired by the DeiT-LT 
approach27, which 
demonstrates the 
effectiveness of distilling 
knowledge from a CNN 
teacher to a ViT student in 
the context of long-tailed 
recognition. In our case, we 
adapt this technique to distill 
knowledge from the MedSAM model to our foundation model's image encoder. To enhance the student model's 
ability to learn generalizable features that are robust to variations in lung CT scans, we pass out-of-distribution 
(OOD) images through the teacher model during distillation. These OOD images are generated by applying 
strong augmentations, such as RandAugment42, to the original lung CT images. The augmented images are 
then fed to the MedSAM teacher model to obtain the corresponding embeddings, which serve as the targets for 
the distillation loss. By learning to mimic the teacher's behavior on these OOD samples, our foundation model 
becomes more resilient to potential variations and artifacts in real-world lung CT scans. 
 
The overall training objective of our foundation model is a weighted combination of the cosine similarity loss and 
the distillation loss, defined in Eq.1 and Eq.2: 

 
𝐿𝑡𝑜𝑡𝑎𝑙 = α𝐿𝑐𝑜𝑠 + β𝐿𝑑𝑖𝑠𝑡𝑖𝑙𝑙 𝑬𝒒. 𝟑 

 
where α and β are hyperparameters that control the relative importance of each loss term. By optimizing this 
dual-loss objective, our foundation model learns a rich and informative representation of lung CT images that 
captures both local and global features crucial for accurate segmentation. The cosine similarity loss ensures that 
the learned features are aligned with relevant textual descriptions, facilitating the association between visual 
patterns and their semantic meaning. Meanwhile, the distillation loss leverages the knowledge encoded in the 

 

    

       

          

     

       

                 

             
                                                  
                                                 

                                                   
                                                 

                                            
                                    
                                         

                                               
                                            

                                        
                                     
                                

          
                                              
                                                

                                            
                                                  

                                                
                                      
                                            

                                          
                       

             
                                              

                                                
                             

          
                                                    
                                              

                                              
                                                   

                                        
                                         
                                               

                                                 
                                             

                                                
                                                
                                           

                                               
            

          
                                      
                                          

                                                 
                                         

                                   
                     

            
                                            

                        

                                            

                  
                                         

 

 

 

  

  

  

  

 

 

               
 

               
 

               
 

               
 

     

               

             

             

  

  

  

  

  

 

   

       

                 

Figure 2. The proposed architecture 
combines similarity learning (CLIP) and 
knowledge distillation. The Image Encoder's 
embedding is aligned with the Text 
Encoder's output to minimize the similarity 
loss, and the distillation loss is computed 
simultaneously. 



MedSAM model, allowing our foundation model to benefit from its pre-trained representations and adapt them 
specifically for lung CT segmentation. This synergistic combination of losses empowers our model to achieve 
robust and reliable performance on the challenging task of lung region segmentation in CT scans. 

SA-2: Generate high-resolution lung probability maps using the foundation model's zero-shot classification 
capabilities 

 
Patch-based Probability Map Generation with Multi-Class Prompts 

Building upon the foundation model developed in SA-1, we will create an inference pipeline to generate high-
resolution, multi-channel probability maps for various anatomical regions in lung CT scans. This pipeline will 
leverage the zero-shot classification capabilities of the foundation model, enabling it to effectively identify and 
localize different anatomical structures without the need for additional training or fine-tuning. Our approach 
draws inspiration from patch-based object localization techniques, where an image is divided into small 
patches, and each patch is assigned a probability score based on its similarity to a given set of text prompts. 
To generate multi-channel probability maps, we will preprocess the input lung CT images by dividing each CT 
slice into a grid of small, overlapping patches. The size of these patches will be carefully chosen to balance the 
trade-off between spatial resolution and computational efficiency. Smaller patch sizes will capture more fine-
grained details but may increase processing time, while larger patch sizes will be more computationally 
efficient but may sacrifice some localization accuracy. We will systematically evaluate different patch sizes to 
determine the optimal configuration for our specific application. 

Each patch will be passed through the image encoder of the foundation model, which was trained using the 
dual-loss approach combining CLIP-style cosine similarity and MedSAM-assisted distillation (as described in 
SA-1). The image encoder will generate a patch-level embedding, denoted as 𝐼𝑒, which captures the salient 
features and visual patterns within the patch. Simultaneously, we will input a set of carefully crafted text 
prompts, such as "lung", "heart", "blood vessel", "airway", and "bone", to the text encoder of the foundation 
model. The text encoder will process these prompts and generate corresponding text embeddings, denoted as 
𝑇𝑒1

, 𝑇𝑒2
, … , 𝑇𝑒𝑛

, where 𝑛 is the number of anatomical classes (in this case, 𝑛 = 5). These text embeddings 

encode the semantic meaning of each anatomical region. To assess the similarity between each patch and the 

 

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

                        

       

       

      

       

              

        

      

         
     

      
          

                    

          

            

                        

                        

                        

                        

                        

                        

       

       

      

       

              

        

      

         
     

      
          

                    

          

            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

                            

         

         

Figure 3. Illustration of the sliding window approach for patch-based probability map generation. The window slides over the image with 
a smaller stride than the patch size, generating overlapping patches. Each patch is processed by the foundation model to obtain 
probability scores for each anatomical class. 



different anatomical regions, we will calculate the cosine similarity between the patch embedding 𝐼𝑒 and each 
of the text embeddings 𝑇𝑒1

, 𝑇𝑒2
, … , 𝑇𝑒𝑛

. The cosine similarity is computed as follows: 

similarity𝑖 =
𝐼𝑒 ⋅ 𝑇𝑒𝑖

||𝐼𝑒|| ⋅ ||𝑇𝑒𝑖
||

𝑬𝒒. 𝟒 

where 𝐼𝑒 ⋅ 𝑇𝑒𝑖
 represents the dot product between the patch embedding and the 𝑖-th text embedding, and ||𝐼𝑒|| 

and ||𝑇𝑒𝑖
|| denote the Euclidean norms of the respective embeddings. The similarity scores obtained will fall 

within the range of -1 to 1, with higher values indicating a stronger alignment between the visual content of the 
patch and the semantic meaning of the corresponding anatomical region. We will assign the computed 
similarity scores as the probability values for each patch, indicating the likelihood of it belonging to each of the 
anatomical regions. This process will result in a multi-channel probability map, where each channel 
corresponds to a specific anatomical class (lung, heart, blood vessel, airway, and bone). While the multi-
channel probability map provides valuable contextual information about the surrounding anatomical structures, 
our primary focus is on the lung channel for binary segmentation. In the next subsection, we will extract the 
lung channel from the multi-channel probability map and apply refinement techniques to obtain a binary lung 
segmentation mask. 

To generate high-resolution probability maps, we will process the patches using a sliding window approach, as 
illustrated in Figure 3. The window will move across the CT slice with a stride smaller than the patch size, 
ensuring that we capture fine-grained spatial information and generate smooth, continuous probability maps for 
each anatomical class. The detailed process is outlined in the provided Algorithm 1: 

As the window slides across the 
CT slice, the probability scores 
of overlapping patches for each 
anatomical class are 
aggregated by taking the 
average or maximum value at 
each pixel location. This 
aggregation step helps to 
reduce noise and promote 
spatial coherence in the 
resulting probability maps. The 
final output is a set of high-
resolution, multi-channel 
probability maps, where each 
pixel value in a specific channel 
represents the likelihood of that 
pixel belonging to the 
corresponding anatomical 
region. 

One of the key advantages of 
our multi-class patch-based 
approach is its ability to 
generate fine-grained, 
anatomically-aware probability 
maps. By incorporating multiple text prompts corresponding to different anatomical structures, we can obtain 
probability maps that highlight the relevant regions for each class. This multi-channel representation provides a 
rich and informative basis for subsequent segmentation and analysis tasks, enabling a more comprehensive 
understanding of the lung CT scans. Furthermore, our approach leverages the zero-shot classification 
capabilities of the foundation model, allowing it to generate probability maps for multiple anatomical regions 
without the need for additional training or fine-tuning. This is made possible by the dual-loss training approach 
employed in SA-1, which aligns the visual and textual embeddings in a shared multi-modal space. By exploiting 
this alignment, we can efficiently generate probability maps for various anatomical structures using only a set of 
text prompts, without requiring explicit annotations for each region in the CT scans. 

Algorithm 1 Multi-class Patch-based Probability Map Generation 
 

Input: 

I: Input lung CT slice of size (h,w,c) 
T                              (      ”    ”  ”     ”  ”            ”  ”      ”  ”    ”) 
image encoder                  ’                (                   ) 
text encoder                  ’               (           ) 
Wi: Learned projection matrix for image embeddings 
Wt: Learned projection matrix for text embeddings 
t: Learned temperature parameter 
patch size: Size of each patch  
stride: Stride for sliding the window  
Output: 
prob map: Multi-channel probability map of size (h,w,n)  
Initialization: 
Initialize an empty multi-channel probability map (prob map) of size (h,w,n) 
1     for i = 0 to h − patch size + 1 with step size stride do 
2 for j = 0 to w – patch size + 1 with step size stride do  
3                 Extract the current patch from the input CT slice 
4          Generate patch embedding using the image encoder 
5   Project patch embedding to the joint embedding space using Wi 
6   Generate text embeddings for each prompt using the text encoder 
7   Project text embeddings to the joint embedding space using Wt 
8  Compute cosine similarities between the patch embedding and text embeddings 
9 Assign the computed similarities to the corresponding channels of prob map 

10 end for 

11  end for 

12  Normalize prob map by the number of overlapping patches at each pixel location  
13  return prob map 
 



To evaluate the effectiveness of our multi-class patch-based probability map generation pipeline, we will 
conduct extensive experiments on a diverse range of lung CT scans. We will assess the quality and accuracy of 
the generated probability maps using both quantitative and qualitative metrics. Quantitative evaluation will 
involve comparing the generated probability maps against ground truth segmentations, when available, using 
metrics such as Dice similarity coefficient (DSC) and Intersection over Union (IoU). Qualitative assessment will 
involve visual inspection of the probability maps by expert radiologists to evaluate their coherence, granularity, 
and alignment with anatomical structures. We will also investigate the impact of various hyperparameters, such 
as patch size, stride, and the choice of text prompts, on the performance of our pipeline. Through rigorous 
experimentation and analysis, we aim to demonstrate the robustness, versatility, and clinical applicability of our 
approach.  

Post-processing Techniques for Probability Map Refinement 

To further optimize the accuracy and quality of the generated lung probability map, we will investigate and 
implement various post-processing techniques. Although our patch-based approach generates multi-channel 
probability maps for various anatomical regions, we will focus specifically on the lung channel for binary 
segmentation. By extracting the lung channel from the multi-channel probability map, we can effectively refine 
the lung region probability map while maintaining the contextual information provided by the other anatomical 
structures. These post-processing techniques aim to refine the lung probability map by reducing noise, improving 
spatial coherence, and emphasizing the most relevant regions. By carefully designing and integrating these post-
processing steps into our pipeline, we can significantly improve the localization accuracy and robustness of our 
lung region segmentation approach, described in Figure 4. 

One of the primary post-processing techniques we will explore is normalization. The probability maps generated 
by our patch-based approach may exhibit variations in the range and distribution of probability values across 
different CT scans. To ensure consistency and comparability, we will apply normalization techniques to scale the 
probability values to a common range, such as [0, 1]. This normalization step will involve analyzing the histogram 
of probability values within each map and applying suitable transformations, such as min-max scaling or sigmoid 
activation. Min-max scaling linearly transforms the probability values to the desired range using the following 
formula: 

𝑃𝑛𝑜𝑟𝑚 =
𝑃 − 𝑚𝑖𝑛(𝑃)

𝑚𝑎𝑥(𝑃) − 𝑚𝑖𝑛(𝑃)
𝑬𝒒. 𝟓 

where 𝑃 represents the original probability values, and 𝑃𝑛𝑜𝑟𝑚 denotes the normalized probability values. 
Alternatively, sigmoid activation can be used to squash the probability values to the range [0, 1] using the logistic 
function: 

𝑃𝑛𝑜𝑟𝑚 =
1

1 + 𝑒−𝛼(𝑃−𝛽)
𝑬𝒒. 𝟔 

 
Figure 4. Overview of the probability map generation and post-processing pipeline. The input lung CT image is fed into the SA-1 model, 
which generates a high-resolution probability map using the foundation model's zero-shot classification capabilities. The generated 
probability map undergoes a series of post-processing techniques, including normalization, spatial smoothing, and heuristic 
thresholding, converting it from a continuous heatmap representation to a discrete binary segmentation mask. 
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where α and β are parameters that control the steepness and the center of the sigmoid curve, respectively. By 
normalizing the probability maps, we can establish a consistent interpretation of the probability values and 
facilitate the application of subsequent post-processing steps and thresholding operations. 

The probability maps obtained from the patch-based approach may contain local noise and irregularities due to 
the granularity of the patches and the sliding window operation. To mitigate these issues and promote spatial 
coherence, we will employ Gaussian smoothing techniques. Gaussian smoothing involves convolving the 
probability map with a 2D Gaussian kernel, which effectively blurs the map and suppresses high-frequency noise. 
The 2D Gaussian kernel is defined as: 

𝐺(𝑥, 𝑦) =
1

2πσ2
exp (−

𝑥2 + 𝑦2

2σ2 ) 𝑬𝒒. 𝟕 

where 𝑥 and 𝑦 represent the spatial coordinates, and σ is the standard deviation of the Gaussian distribution. 
The size and standard deviation of the Gaussian kernel will be carefully tuned to strike a balance between noise 
reduction and preservation of important spatial details. Additionally, we will investigate the use of edge-
preserving smoothing techniques, such as bilateral filtering or guided filtering, which can smooth the probability 
map while maintaining sharp transitions at the boundaries of the lung regions. By applying these smoothing 
techniques, we can obtain a more robust and spatially consistent representation of the lung regions in the 
probability maps. 

We will develop and evaluate various heuristic thresholding strategies to binarize the refined probability maps 
into lung and non-lung regions. Thresholding is a crucial step in converting the continuous probability values into 
discrete segmentation masks. We will explore different thresholding approaches, including adaptive 
thresholding, multi-level thresholding, and global thresholding. Global thresholding involves selecting a single 
probability threshold τ and classifying all pixels above the threshold as lung regions and those below as non-
lung regions: 

𝑀𝑎𝑠𝑘𝑏𝑖𝑛𝑎𝑟𝑦(𝑥, 𝑦) = {
1, 𝑃(𝑥, 𝑦)  ≥ τ
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑬𝒒. 𝟖 

where 𝑀𝑎𝑠𝑘𝑏𝑖𝑛𝑎𝑟𝑦(𝑥, 𝑦) represents the binary segmentation mask, and 𝑃(𝑥, 𝑦) denotes the probability value at 

the pixel location (𝑥, 𝑦). Adaptive thresholding, on the other hand, takes into account the local characteristics of 
the probability map and determines threshold values dynamically based on the neighborhood of each pixel. One 
common approach is to use the mean or median of the local neighborhood as the threshold value. Multi-level 
thresholding extends this concept by defining multiple probability thresholds and generating a hierarchical 
segmentation of the lung regions. By carefully selecting and fine-tuning these thresholding strategies, we can 
optimize the trade-off between sensitivity and specificity in detecting lung regions and achieve a highly accurate 
binary segmentation mask. 

In-House Data Collection for Pre-processing for Lung CT Segmentation 

To create a diverse and high-quality in-house dataset for validating and refining our lung CT segmentation 
framework, we will collect a retrospective cohort of 250 lung CT scans from patients who have undergone 
chest CT imaging for various clinical indications. This sample size was determined based on the findings of 
recent studies demonstrating the importance of training data diversity for robust lung segmentation 
performance. For example, a study15 showed that a diverse dataset of 231 cases outperformed models trained 
on public datasets, achieving a mean Dice score of 0.98 compared to 0.94 for a model trained on the Lung 
Tissue Research Consortium dataset. Similarly, another study43 used a multi-institutional dataset of 929 CT 
scans and achieved mean Dice scores of 0.985. While a larger dataset was used in the latter study, the 
difference in performance compared to the smaller diverse dataset was minimal, suggesting that data diversity 
plays a crucial role in achieving high segmentation accuracy. Given that our institution's patient population 
encompasses a wide range of lung appearances and pathologies, we believe that a sample size of 250 scans 
will capture substantial variability while remaining manageable for the scope of this study. By collecting this 
diverse dataset, we aim to provide a rigorous test of our segmentation framework's robustness and 
generalizability. The collected CT scans will be stored in the Digital Imaging and Communications in Medicine 
(DICOM) format, which includes complete header information. The collected CT scans will undergo a 
streamlined quality control and pre-processing pipeline to ensure data consistency, reliability, and optimal 



performance of our segmentation algorithms, as illustrated in Figure 5. 

The first step in our pipeline is a quality control check, where the collected CT scans will be assessed for their 
suitability for further analysis. This quality control step will involve a combination of automated checks and 
manual verification by experienced radiologists. The automated checks will screen for common issues such as 
incomplete or corrupted DICOM files, insufficient coverage of the lung region, and excessive noise or artifacts. 
Scans that pass the initial automated checks will then undergo a rapid manual verification to identify any 
remaining issues that may have been missed. This two-step quality control process allows us to efficiently filter 
out problematic scans while maintaining a high level of data quality. Scans that fail the quality control checks 
will be excluded from further analysis and dumped from the pipeline to maintain the integrity of the dataset. 

Scans that pass the quality control checks will then 
undergo a comprehensive pre-processing procedure to 
standardize the data and enhance the performance of 
our segmentation algorithms. The first step in our pre-
processing pipeline is intensity normalization, where we 
will scale the raw CT intensity values to a standardized 
range. This is typically achieved by converting the raw 
HU to a predefined range (e.g., -1000 to 400 HU) that 
emphasizes the lung parenchyma and other relevant 
structures. Intensity normalization ensures that the 
intensity distributions are consistent across scans, 
facilitating the subsequent analysis steps. The next step 
is noise reduction, where we will employ advanced 
techniques such as non-local means filtering or block-
matching and 3D filtering (BM3D) to suppress noise 
while preserving the fine details and edges of the lung 
structures. These techniques exploit the self-similarity of 
image patches to effectively denoise the images without 
over-smoothing the important features. After noise 
reduction, we will apply artifact correction methods to 
mitigate common CT artifacts such as beam hardening, 
partial volume effects, and motion artifacts. This may 
involve techniques such as projection-based metal 
artifact reduction, iterative reconstruction algorithms, or 
deep learning-based artifact suppression methods. By 
correcting these artifacts, we can improve the overall 
quality and interpretability of the CT scans. Finally, we 
will resample the scans to a consistent voxel spacing 
and resize them to a fixed image size (e.g., 512x512x512) to ensure a standardized input for our segmentation 
algorithms. Resampling will be performed using interpolation methods such as trilinear or higher-order spline 
interpolation to minimize the loss of spatial resolution. The choice of target voxel spacing and image size will 
be based on the trade-off between computational efficiency and segmentation accuracy, as determined by 
empirical evaluation. 

After the completion of the pre-processing steps, the curated lung CT dataset will be ready for the application 
of our patch-based probability map generation pipeline, which leverages the foundation model developed in 
SA-1. This pipeline employs a windowing approach, where the pre-processed CT scans are divided into 
smaller patches, and each patch is processed by the foundation model to generate class-specific probability 
maps. By using multiple window sizes and combining the probability maps from different patches, we can 
generate high-resolution, multi-class probability maps that provide detailed localization information for various 
anatomical regions in the lungs. These probability maps serve as pseudo-annotations, providing a rich source 
of training data for our segmentation models without the need for manual annotation. The pseudo-annotations 
will be used in SA-3 to fine-tune our segmentation models, enabling them to adapt to the specific 
characteristics of our in-house dataset and improve their performance on real-world clinical data. By leveraging 
the power of the foundation model and the windowing approach, we can efficiently generate high-quality 
pseudo-annotations for a large number of scans, overcoming the limitations of manual annotation and 
accelerating the development of robust lung CT segmentation algorithms. 

 

 

        

       

    

              

                       

                

                    

                      

                  

    

    

       

          

        

Figure 5. Refined in-house 
data collection and pre-
processing pipeline for lung 
CT segmentation. The 
workflow includes collecting 
CT scans, performing quality 
control, pre-processing the 
scans (intensity 
normalization, noise 
reduction, artifact correction, 
resampling, and resizing), 
applying the windowing 
approach, and generating 
pseudo-annotations. 



SA-3: Pseudo-Segmentation Label Generation and Model Fine-tuning 

Generating Pseudo-Segmentation Labels 

In SA-3, we will generate pseudo-segmentation labels for our in-house lung CT dataset by leveraging the 
probability maps obtained from SA-2 and the MedSAM model. The process involves overlaying a grid on the 
lung CT image and extracting the coordinates of each grid intersection. Using the SA-2 model, we generate 
and postprocess a probability map for the lung region by providing a relevant text prompt. This binary 
probability map focuses on distinguishing between lung and non-lung regions, while the multi-class probability 
maps generated in SA-2 for other anatomical structures serve as auxiliary inputs to guide the segmentation 
process. The grid intersections are then filtered based on their location within the probability map, creating a 
list of "dot prompts" that correspond to the lung region. These dot prompts, along with the lung CT image, are 
fed into the MedSAM model, which generates a segmentation mask for each dot prompt, as described in 
Algorithm 2. 

To create the final pseudo-segmentation label, we combine the individual segmentation masks using a voting 
scheme. The overlap ratio between each segmentation candidate (𝐶𝑘) and the probability map (𝑃) is calculated 
using the formula: 

OverlapRatio =  
|𝐶𝑘 ∩ 𝑃|

|𝐶𝑘|
 𝑬𝒒. 𝟗 

where |𝐶𝑘 ∩  𝑃| represents the intersection area between the segmentation candidate and the probability map, 
and |𝐶𝑘| represents the area of the segmentation candidate. If the overlap ratio exceeds a heuristically 
predefined threshold, the segmentation candidate is included in the final pseudo-segmentation label. The 
selected segmentation candidates are then combined using a union operation to form the final pseudo-
segmentation label: 

Segpseudo = ⋃ (𝐶𝑘|
|𝐶𝑘 ∩ 𝑃|

|𝐶𝑘|
> 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑)  𝑬𝒒. 𝟏𝟎 

By applying this pseudo-
segmentation label 
generation procedure to our 
in-house lung CT dataset 
collected in SA-2, we can 
obtain a large number of 
annotated samples to fine-
tune the MedSAM model. 
The generated pseudo-
segmentation labels will 
serve as a valuable 
resource for adapting the 
model to the specific 
characteristics of our 
dataset, improving its ability 
to accurately segment lung 
regions in real-world clinical 
scenarios. The use of 
probability maps from SA-2 
and the MedSAM model in 
the label generation 
process helps to ensure the 
quality and reliability of the 
pseudo-segmentation 
labels. The probability maps 
provide a robust estimate of 
the lung regions, while the 
MedSAM model's 
segmentation capabilities 
help to refine and localize the regions of interest. By combining these two sources of information, we can 
generate pseudo-segmentation labels that closely approximate the true segmentation masks, enabling effective 
fine-tuning of the MedSAM model. 

Fine-Tuning MedSAM with Pseudo-Segmentation Labels and H-SAM 

Algorithm 2 Pseudo-Segmentation Label Generation 
 

Input: 

I: Input lung CT image 
G: Grid size for extracting dot prompts 
SA-2Model: Probability map generation model from SA-2 
MedSAM: MedSAM segmentation model 
threshold: Overlap ratio threshold for selecting segmentation candidates  
Output: 
𝑆𝑒𝑔𝑝𝑠𝑒𝑢𝑑𝑜: Final pseudo-segmentation label 

Initialization: 
Initialize an empty segmentation mask (𝑆𝑒𝑔𝑝𝑠𝑒𝑢𝑑𝑜) of the same size as the input CT image 

Generate grid intersections (gridIntersections) on the input CT image I using grid size G 
Generate probability map (probabilityMap) for the lung region using SA-2Model with the text prompt 
Filter grid intersections (dotPrompts) based on their location within the probabilityMap 
Initialize an empty list (Masks) to store individual segmentation masks 
1  for each dot  in dotPrompts do 
2          Generate a segmentation mask (mask_candidate) using MedSAM with I and dot 
3           Append mask_candidate to Masks 
4  end for 

5  for each candidate in Masks do 
6           Calculate the overlapRatio between candidate and probabilityMap 

7           if overlapRatio > threshold then 
8                    𝑆𝑒𝑔𝑝𝑠𝑒𝑢𝑑𝑜  = 𝑆𝑒𝑔𝑝𝑠𝑒𝑢𝑑𝑜  ∪ segmentationMask 

9           end if 

10 end for 

11 return 𝑆𝑒𝑔𝑝𝑠𝑒𝑢𝑑𝑜 



Given the limited size of our in-house dataset, data augmentation will play a vital role in expanding the training 
set and improving the model's ability to generalize to unseen cases. By applying various transformations to the 
pseudo-labeled CT scans, we can introduce more variability and simulate a wider range of lung anatomies and 
imaging conditions. This will help the model learn more robust features and reduce overfitting to the specific 
characteristics of our dataset. To augment our pseudo-labeled dataset, we will apply a combination of geometric, 
intensity-based, and advanced augmentation techniques. Geometric transformations, such as random rotations, 
translations, and elastic deformations, will be used to simulate variations in patient positioning and anatomical 
structures. These transformations will help the model learn to be invariant to such variations, enabling it to 
segment lung regions accurately across a wide range of patient scans. Intensity-based transformations, such as 
brightness and contrast adjustments, Gaussian noise addition, and histogram equalization, will be employed to 
mimic variations in image acquisition settings and enhance the model's ability to handle different imaging 
conditions. In addition to these standard augmentation techniques, we will incorporate advanced augmentation 
methods, such as Cutout4, CutMix5, and Mixup6, described in Figure 6(B),  to further enrich our training dataset, 
illustrated in Figure 6. Cutout randomly masks out square regions of the input image, encouraging the model to 
learn more robust features and reducing overfitting. CutMix replaces the cropped regions with patches from 
another image, creating new combinations of visual patterns and improving the model's ability to generalize. 
Mixup linearly combines two input images and their corresponding labels, generating interpolated samples that 
help the model learn smoother decision boundaries. By applying these advanced augmentation techniques to 
both the input CT scans and their corresponding pseudo-segmentation labels, we can significantly expand the 
diversity and richness of our training dataset, leading to improved segmentation performance and robustness. 

To fine-tune the MedSAM model, we will adopt the H-SAM architecture, which introduces several innovative 
components to improve segmentation performance, illustrated in Figure 6(A). H-SAM employs a LoRA-adapted 
image encoder, which freezes the pre-trained layers of the original SAM encoder and adds a smaller, trainable 
bypass composed of two low-rank matrices. This approach allows for efficient adaptation of the encoder to the 
specific characteristics of our lung CT dataset while preserving the valuable pre-learned knowledge. During fine-
tuning, only the bypass matrices will be updated, enabling minor yet effective adjustments to the encoder's 
feature representations. To complement the hierarchical Transformer decoder, H-SAM also incorporates a 
hierarchical 
pixel decoder 
inspired by the 
U-Net 
architecture. 
The pixel 
decoder in the 
second stage 
integrates 
features from 
the first-stage 
pixel decoder 
through skip 
connections, 
allowing for the 
generation of 
high-resolution 
predictions. This 
hierarchical 
pixel decoder 
effectively 
handles multi-
scale objects in 
medical images 
and captures 
intricate local 
details, further 
enhancing the 
segmentation quality. 

 
 

                 

                

 

 

Figure 6. (A) H-SAM architecture 
for fine-tuning MedSAM, 
consisting of a LoRA-adapted 
encoder, hierarchical 
Transformer decoder, and 
hierarchical pixel decoder by 

Cheng et al2. (B) Data 

augmentation methods: Cutout4 

masks out square regions, 

CutMix5 replaces cropped 

regions, and Mixup6 linearly 

combines images and labels. 



During the fine-tuning process, we will employ a combination of loss functions to optimize the MedSAM model. 
The training loss will consist of a pixel-wise classification loss, such as binary cross-entropy loss, and a region-
based loss, such as the Dice loss. The binary cross-entropy loss is defined as: 

𝐿BCE = −
1

𝑁
∑ 𝑦𝑖 log(𝑦𝑖̂) + (1 − 𝑦𝑖) log(1 − 𝑦𝑖̂)

𝑁

𝑖=1

 𝐸𝑞. 11 

where 𝑁 is the number of pixels, 𝑦𝑖 is the ground truth label for pixel 𝑖, and 𝑦𝑖̂ is the predicted probability for pixel 
𝑖. 

The Dice loss, which is particularly effective for segmentation tasks with imbalanced class distributions, is defined 
as: 

𝐿Dice = 1 −
2 ∑ 𝑦𝑖𝑦𝑖̂

𝑁
𝑖=1 + ϵ

∑ 𝑦𝑖
𝑁
𝑖=1 + ∑ 𝑦𝑖̂

𝑁
𝑖=1 + ϵ

 𝐸𝑞. 12 

where ϵ is a small constant added for numerical stability. 

These losses will be applied to both stages of the hierarchical decoding procedure, with the first stage supervised 
using ground truth masks of reduced resolution and the second stage supervised using the original high-
resolution ground truth. The total loss for each stage will be a weighted combination of the binary cross-entropy 
loss and the Dice loss: 

𝐿𝑠𝑡𝑎𝑔𝑒 =  𝜆𝐵𝐶𝐸𝐿𝐵𝐶𝐸 +  𝜆𝐷𝑖𝑐𝑒𝐿𝐷𝑖𝑐𝑒 𝐸𝑞. 13 

where 𝜆𝐵𝐶𝐸 and 𝜆𝐷𝑖𝑐𝑒 are hyperparameters that control the relative importance of each loss term. 

The final output will be an ensemble of the probabilities from both stages, leveraging the complementary 
information captured at different scales. The ensemble output 𝑦̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 is computed as a weighted average of 
the probabilities from the first stage (𝑦̂1) and the second stage (𝑦̂2): 

𝑦̂𝑒𝑛𝑠𝑒𝑚𝑏𝑙𝑒 =  𝛼𝑦̂1 +  (1 −  𝛼)𝑦̂2 𝐸𝑞. 14  

where 𝛼 is a hyperparameter that determines the contribution of each stage to the final output. 

By incorporating deep supervision and a weighted combination of stage-specific losses, we can ensure thorough 
optimization of the model and achieve superior segmentation performance. 

By leveraging the pseudo-segmentation labels generated from our in-house lung CT dataset, employing 
advanced data augmentation techniques, and adopting the H-SAM architecture for fine-tuning, we aim to develop 
a highly accurate and robust lung segmentation model. The combination of these strategies will enable the model 
to learn from a diverse range of patient scans, adapt to the specific characteristics of our dataset, and generate 
precise segmentations that can support clinical decision-making and research applications in the field of 
pulmonary medicine. 

Evaluating the Fine-Tuned MedSAM Model 

To assess the effectiveness of our fine-tuned MedSAM model, we will evaluate its performance on a held-out 
portion of the in-house lung CT dataset with expert-annotated segmentation labels. This evaluation set will 
consist of a diverse range of cases, including various stages of lung diseases and different patient demographics, 
to ensure a comprehensive assessment of the model's generalization capabilities. The ground truth 
segmentation labels for this evaluation set will be carefully annotated by experienced radiologists, following a 
standardized protocol to ensure consistency and reliability. 

We will employ several widely-used evaluation metrics to quantify the model's performance and compare it 
against state-of-the-art methods. The primary metric will be the Dice similarity coefficient (DSC), which measures 
the overlap between the predicted segmentation and the ground truth. The DSC is defined as: 



𝐷𝑆𝐶 = 1 − 𝐿Dice 𝐸𝑞. 15 

where A is the predicted segmentation, and B is the ground truth segmentation. A higher DSC value indicates 
better segmentation accuracy, with a perfect overlap resulting in a DSC of 1. Additionally, we will calculate the 
Hausdorff distance (HD), which measures the maximum distance between the predicted and ground truth 
segmentation boundaries. The HD is defined as: 

𝐻𝐷(𝐴, 𝐵) = max {sup
𝑎∈𝐴

inf
𝑏∈𝐵

𝑑 (𝑎, 𝑏), sup
𝑏∈𝐵

inf
𝑎∈𝐴

𝑑 (𝑎, 𝑏)}  𝐸𝑞. 16 

where d(a, b) is the Euclidean distance between points a and b. A lower HD value indicates better boundary 
alignment and 
segmentation 
precision. We 
will report both 
the 95th 
percentile HD 
and the average 
symmetric 
surface distance 
(ASSD) to 
provide a 
comprehensive 
assessment of the model's boundary delineation performance. Other evaluation metrics, such as sensitivity, 
specificity, and the Jaccard index, will also be calculated to provide a more comprehensive understanding of the 
model's performance. 

To benchmark our fine-tuned MedSAM model, we will compare its performance against state-of-the-art methods 
for lung CT segmentation. This will include the original MedSAM model, which will serve as a baseline to 
demonstrate the effectiveness of our fine-tuning approach. Additionally, we will compare our model against other 
top-performing models specifically designed for lung CT segmentation, such as nnU-Net33 and SAM20. nnU-Net 
is a self-configuring deep learning framework that has shown excellent performance across various medical 
image segmentation tasks, while TotalSegmentator is a specialized model that has achieved state-of-the-art 
results in lung CT segmentation. By comparing our model's performance against these established methods, we 
can assess its relative strengths and weaknesses and demonstrate its potential for clinical application. The 
results of this comparison will be presented in a comprehensive table, showcasing the example evaluation 
metrics for each model in Table 1. This table will provide a clear and concise overview of our model's 
performance relative to the state-of-the-art, enabling readers to easily assess its effectiveness and potential 
impact in the field of pulmonary medicine. 

Potential Pitfalls and Alternatives 

While our proposed approach of leveraging foundation models, knowledge distillation, and pseudo-labeling 
techniques for lung CT segmentation shows promise, there are several potential pitfalls to consider. One major 
concern is the reliance on pre-training performance. If the pre-training phase does not yield a sufficiently robust 
and generalizable foundation model, the subsequent fine-tuning process may struggle to achieve optimal 
results. This could be due to limitations in the dataset used for pre-training, such as insufficient diversity or 
inadequate representation of certain anatomical variations. To mitigate this risk, it is crucial to carefully curate 
the pre-training dataset, ensuring that it encompasses a wide range of lung anatomies, pathologies, and 
imaging conditions. Additionally, exploring alternative pre-training strategies, such as contrastive learning or 
self-supervised learning, could potentially enhance the foundation model's ability to capture meaningful 
representations. 

Another potential issue is the effectiveness of our approach in segmenting small or subtle structures within the 
lungs. While the use of a large pseudo-labeled dataset may improve the model's performance on larger, more 
prominent regions like the lung parenchyma, it may not necessarily translate to accurate segmentation of finer 
details, such as small nodules or vascular structures. This limitation could be attributed to the inherent 
challenges in generating high-quality pseudo-labels for these intricate regions, as well as the potential 

 

 Whole lesion Central 50% Off-center 50% 

SAM (no fine-tuning) 0.4745±0.2138 0.7343±0.1789 0.2890±0.2076 

SAM single task (fine-tuning) 0.7136±0.1277 0.8463±0.1240 0.5034±0.2070 

SAM parallel multitask (fine-tuning) 0.6985±0.1312 0.8354±0.1178 0.4891±0.2113 

SAM cascaded multitask (fine-tuning) 0.7239±0.1321 0.8363±0.1149 0.5241±0.2291 

2D nnU-Net 0.6682±0.1659 0.7786±0.1740 0.4553±0.1966 

3D nnU-Net 0.7797±0.1089 0.8341±0.1039 0.6331±0.1973 
Table 1. Example comparison of lung CT segmentation performance between fine-tuned SAM model and state-

of-the-art methods by Liu et al3. 



oversimplification of their appearance in synthetic data. To address this concern, it may be necessary to 
incorporate additional strategies specifically targeted at refining the segmentation of small structures. This 
could involve the use of multi-scale architectures, attention mechanisms, or specialized loss functions that 
prioritize the accurate delineation of these regions. Furthermore, integrating a smaller set of expertly annotated 
data focusing on these challenging cases could provide valuable guidance during the fine-tuning process. 

Lastly, the size of the text data in our pre-training dataset may be insufficient. While we have a substantial 
number of CT scans (60,000), which can be split into a large number of individual images (700,000), the 
corresponding text data is limited to only 60,000 instances. This disparity could hinder the foundation model's 
ability to learn robust associations between visual and textual features, potentially impacting its performance in 
downstream tasks. To overcome this limitation, we could explore techniques for augmenting the text data, 
such as generating synthetic reports using natural language generation models or leveraging external sources 
of medical text data. Additionally, investigating alternative architectures that can effectively handle the 
imbalance between image and text data, such as cross-modal attention mechanisms or hierarchical fusion 
strategies, could help mitigate the impact of limited text information. 
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